Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Rev Microbiol ; : 1-20, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470107

RESUMEN

Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.

2.
Drug Discov Today ; 29(2): 103862, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122966

RESUMEN

Piezoelectric materials, capable of converting mechanical energy into electrical energy and vice versa, have emerged as promising candidates for designing intelligent drug delivery vehicles. Leveraging their inherent electrical properties, these materials respond to external stimuli, such as mechanical forces and electrical signals, to control drug release. By integrating piezoelectric materials into drug delivery systems, we can achieve exacting control over drug-release mechanisms. Piezoelectric materials hold enormous promise as smart delivery vehicles in cancer treatment, responding to mechanical and electrical cues, enabling site-specific drug release, reducing systemic toxicity and enhancing therapeutic effectiveness. Further advancements in the field are expected to lead to innovative piezoelectric-based systems that can revolutionize cancer treatment strategies, as explored in this review article.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...